
valuesets

A LinkML-based Framework for Standardized Enumerations with
Semantic Grounding

Christopher J. Mungall

Lawrence Berkeley National Laboratory

1

The Problem: Data Standardization is Hard

Every project reinvents the wheel with inconsistent representations:

Different datasets, same concept
vital_status = "alive" # Dataset A
vital_status = "LIVING" # Dataset B
vital_status = 1 # Dataset C
vital_status = "A" # Dataset D

Result: Thousands of incompatible representations blocking data integration

2

The Semantic Chasm

Despite massive infrastructure investment:

NLM VSAC: 1,520+ clinical value sets

NCI Thesaurus: 192,000 cancer concepts

NIH CDEs: 142,000+ common data elements

HL7 FHIR: Healthcare terminology standards

Yet: Scientific software still uses ad-hoc enumerations

Why? Complexity gap between terminology services and everyday programming

3

The Gap: What Exists vs What Developers Need

Existing Systems Provide Developers Actually Need

Runtime services Compile-time artifacts

Comprehensive coverage Common values quickly

Authentication & servers Zero dependencies

Healthcare-focused Cross-domain support

Complex APIs Native enums with IDE support

4

valuesets: Bridging the Gap

Core Idea: Compile semantically-grounded value sets into type-safe native code

A collection of common, standardized enumerations that:

Link every value to ontology terms

Provide Python-first convenience with multi-language support

Built on LinkML standards

Have zero runtime dependencies

5

"Stealth Semantics" in Action

from valuesets.enums.core import VitalStatusEnum

status = VitalStatusEnum.ALIVE
print(status.value) # "ALIVE"
print(status.get_meaning()) # "NCIT:C37987"
print(status.get_description()) # "Living or alive"

Semantic interoperability across systems
if status1.get_meaning() == status2.get_meaning():
 process_compatible_records()

Simple interface, semantic power when needed

6

Rich Metadata & Ontology Mappings

from valuesets.enums.bio.structural_biology import StructuralBiologyTechnique

technique = StructuralBiologyTechnique.CRYO_EM
print(technique.get_description())
"Cryo-electron microscopy"

print(technique.get_meaning())
"CHMO:0002413" (Chemical Methods Ontology)

print(technique.get_annotations())
{'resolution_range': '2-30 Å typical', ...}

7

Cross-Domain Coverage

322 enumerations across 22 domains:

Biology (127): Taxonomy, cell biology, structural techniques

Physical Sciences (48): Chemical elements, materials, structures

Data Science (43): Statistical tests, ML models, quality metrics

Healthcare (29): Clinical findings, vital status, demographics

Computing (23): File formats, languages, maturity levels

Geographic & Temporal (31): Countries, time zones, spatial relations

78% have ontology mappings → 8,743 semantic links

8

Architecture: Build-Time not Runtime

┌─────────────────┐
│ LinkML YAML │ ← Human-editable schemas
│ (source) │
└────────┬────────┘
 │
 ▼
┌─────────────────┐
│ Code Generators │ ← Transform to multiple formats
└────────┬────────┘
 │
 ├──→ Python (Pydantic enums)
 ├──→ TypeScript (type-safe enums)
 ├──→ JSON Schema (validation)
 ├──→ OWL (semantic web)
 └──→ SQL DDL (database constraints)

9

Progressive Semantic Enhancement

Three levels of usage:

1. ~90% of use cases: Simple type-safe enumerations

status = VitalStatusEnum.ALIVE # Just works

2. ~9% of use cases: Access metadata for UIs/docs

label = status.get_description()

3. ~1% of use cases: Full semantic integration

ontology_term = status.get_meaning() # "NCIT:C37987"

10

Comparison with Established Systems

System Scope Access Size Advantage

VSAC Clinical QM API (auth) Service Cross-domain, no auth

NCIt Cancer 500MB OWL Service Lightweight, simple

FHIR Healthcare Term. server Service Compile-time, no server

valuesets Cross-domain Native packages <50MB Developer-friendly

valuesets complements not replaces - provides practical bridge

11

Design Principles

1. Semantic Grounding: Every value links to ontologies

2. Developer Ergonomics: Native enums, full IDE support

3. Modular Organization: Import only what you need

4. Extensibility: Add new enums without breaking changes

5. Multi-format: JSON Schema, OWL, SQL, native code

6. FAIR Compliance: Persistent IDs, metadata, open access

12

LinkML: The Foundation

enums:
 VitalStatusEnum:
 description: Status indicating whether individual is alive or deceased
 permissible_values:
 ALIVE:
 description: Living or alive
 meaning: NCIT:C37987
 DECEASED:
 description: Dead or deceased
 meaning: NCIT:C28554
 UNKNOWN:
 description: Vital status is not known
 meaning: NCIT:C17998

Human-readable → Machine-processable → Multiple outputs

13

Integration Patterns

Four primary adoption strategies:

1. Direct Adoption: Greenfield projects

2. Mapping Layer: Legacy system translation

3. Hybrid Approach: Dev/test vs. production

4. Semantic Bridge: Ontology integration

All paths support incremental adoption

14

FAIR Data Principles

valuesets is FAIR-compliant:

Findable: w3id.org permalinks, rich metadata

Accessible: Open source, multiple formats

Interoperable: LinkML, OWL, JSON-LD, FHIR

Reusable: Clear licensing, documented provenance

Published as OWL ontology: https://w3id.org/valuesets/valuesets.owl.ttl

15

https://w3id.org/valuesets/valuesets.owl.ttl

OWL Rendering in Protege

16

Quality Assurance

Automated validation on every commit:

Validation Type Coverage Purpose

Syntax 100% schemas LinkML compliance

Semantic All mappings Ontology term verification

Cross-reference All namespaces External reference resolution

Completeness All enums Missing descriptions/mappings

Consistency All values Duplicate detection

17

Dynamic Enums (Coming Soon)

Current: Static values with ontology mappings

Future: Runtime expansion from ontologies

CellTypeEnum:
 reachable_from:
 source_ontology: obo:cl
 source_nodes:
 - CL:0000540 # neuron
 relationship_types:
 - rdfs:subClassOf

Hybrid: static core + dynamic expansion for comprehensive coverage

18

Future Directions

Coverage Expansion:

Social sciences, engineering, humanities

Technical Enhancements:

Web-based validation APIs

AI-assisted mapping tools

Enhanced dynamic enum support

Governance:

Domain-specific editorial committees

Formal deprecation policies

Maturity level indicators 19

Sustainability Through Simplicity

Technical Sustainability:

Zero runtime dependencies

No infrastructure costs

Works offline, on laptops

Social Sustainability:

Low barrier to contribution (edit YAML)

Community-driven development

Clear exit strategies

Economic Sustainability:

No hosting/licensing costs

O d l

20

By the Numbers

Metric Count

Enumerations 322

Permissible Values 7,512

Ontology Namespaces 117

Semantic Mappings 8,743

Domain Modules 22

Schemas 68

Ontology Mapping Coverage 78%

21

Quick Start

Install
pip install valuesets

Use immediately
from valuesets.enums.bio.taxonomy import CommonOrganismTaxaEnum
from valuesets.enums.core import VitalStatusEnum

human = CommonOrganismTaxaEnum.HUMAN
print(human.get_meaning()) # "NCBITaxon:9606"

status = VitalStatusEnum.ALIVE
print(status.get_meaning()) # "NCIT:C37987"

5-minute experience: Value within 5 minutes of discovery

22

Contributing

We welcome contributions from:

Domain Experts: Add value sets for your field

Developers: Improve tooling, fix issues

Users: Report missing enums, share use cases

Process:

1. Edit YAML schema files

2. Add ontology mappings (use OLS)

3. Include descriptions and examples

4. Submit pull request

See: CONTRIBUTING.md 23

Development Commands

Using just command runner
just --list # Show all commands
just test # Run tests
just doctest # Run doctests
just validate # Validate schemas
just site # Build documentation

All managed through modern development workflows

24

Resources

Docs: https://linkml.io/valuesets/

Repository: https://github.com/linkml/common-value-sets

PyPI: https://pypi.org/project/valuesets/

OWL Ontology: https://w3id.org/valuesets/valuesets.owl.ttl

LinkML: https://linkml.io/

25

https://linkml.io/valuesets/
https://github.com/linkml/common-value-sets
https://pypi.org/project/valuesets/
https://w3id.org/valuesets/valuesets.owl.ttl
https://linkml.io/

Key Insight

"The problem is not missing standards but mismatched abstractions"

valuesets bridges the gap:

Terminology services → Terminology artifacts

Runtime flexibility → Compile-time guarantees

Institutional deployment → Developer laptops

Making semantic standards accessible to everyday programming

26

valuesets

Making Data Standardization Simple, Semantic, and Scalable

Try it today:

pip install valuesets

Questions?

Christopher J. Mungall • cjmungall@lbl.gov
Lawrence Berkeley National Laboratory

27

mailto:cjmungall@lbl.gov

Appendix: Example Domains

Biological Sciences:

Taxonomy (NCBI), Cell types (CL), Cell cycle (GO)

Gene Ontology evidence codes

Structural biology techniques (CHMO)

Model organisms

Data Science:

Statistical tests (STATO)

ML model types, dataset splits

Data quality indicators

Clinical/Healthcare:

Vit l t t (NCIT) bl d t (SNOMED)

28

Appendix: Semantic Web Integration

from valuesets.enums.bio.cell_cycle import CellCyclePhase

Generate SPARQL query
phase = CellCyclePhase.S_PHASE
go_term = phase.get_meaning() # "GO:0000084"

sparql = f"""
SELECT ?gene ?function
WHERE {{
 ?gene cellCyclePhase <{go_term}> .
 ?gene hasFunction ?function .
}}
"""

Seamless integration with knowledge graphs

29

Appendix: Multi-Language Support

Current:

Python (Pydantic enums)

TypeScript (type-safe)

JSON Schema

OWL/RDF

Planned:

Java

R

Julia

Rust

LinkML generates idiomatic code for each language
30

Credits & Acknowledgments

Contributors:

Christopher J. Mungall - Lawrence Berkeley National Laboratory

Justin Reese - Lawrence Berkeley National Laboratory

Built with:

LinkML - Linked Data Modeling Language

linkml-project-copier - Project template

OBO Foundry - Biological ontologies

OLS/BioPortal - Ontology lookup services

Open source • MIT License • Community-driven

31

